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Abstract--A planar system is formulated for pressure-drop type oscillations in a single-channel boiling 
system, and the pressure-drop type oscillations are analyzed from the perspective of dynamical system 
theory. The planar system is developed by using a lumped parameter model, in which the system inlet 
pressure and the mass flow rate are coupled. The results of Hopf bifurcation analysis, the stability criteria 
and the limit cycles of the pressure-drop type oscillations obtained from the model agree well with 
experimental results. 
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1. I N T R O D U C T I O N  

Boiling two-phase flow systems are prone to several types of flow instabilities, such as density-wave 
type oscillation, pressure-drop type oscillation, acoustic oscillation, flow excursion and relaxation 
type instabilities. In the last several decades a considerable amount of research work has been 
carried out in the field of two-phase flow instabilities, since two-phase flow instabilities can cause 
serious problems, such as flow-induced structure vibrations, tube thermal fatigue, deterioration of 
system control. Among the reviews on the work of two-phase flow instabilities are those by Bergles 
(1981), Yadigaroglu (1981) and Kakaq & Liu (1991). 

Pressure-drop type oscillations were first observed by Stenning (1964) and by Maulbetsch & 
Griffith (1966). Due to the high magnitudes of pressure and mass flow rate fluctuations, and 
especially the high magnitude of temperature fluctuations they induce in the heater wall, 
pressure-drop type oscillations are very dangerous once they occur. The analytical proofs have been 
mostly limited to showing that operation on the negative region of  the pressure-drop versus mass 
flow rate characteristics is unstable in the presence of a compressible volume. 

Since experimental results show that the steady-state characteristics curves have two positive 
slope regions and one negative slope region in between, as mass flow rate continues to increase 
or decrease, the system should go through two bifurcation points, at one of the points a limit cycle 
is born and at the other the limit cycle vanishes. Yet theoretical proof of  the complete bifurcation 
diagram is still non-existing. Padki et al. (1992) performed the first bifurcation analysis on the 
pressure-drop type oscillations based on an integral model. The main objective of  this study is to 
prove theoretically the existence, the uniqueness and the stability of  the limit-cycle of pressure-drop 
type oscillations and provide the whole bifurcation diagram of the dynamic system. The model 
presented here is very simple so that it is easy to capture the main mechanisms of the oscillations, 
and yet it is not over simplified so that it also gives the whole bifurcation diagram. 

2. E X P E R I M E N T A L  I N V E S T I G A T I O N S  

Figure 1 is a schematic diagram of the two-phase flow loop used in the experimental studies. 
The test-fluid, R-I 1, is supplied from the liquid container pressurized by nitrogen gas. The test 
section is a vertical nichrome tube 60.5 cm long, heated by direct current. Following the test section 
is a recovery section consisting of a condenser and a collector tank. The mixture of saturated liquid 
and vapor is led through the condenser coil. The condensed liquid is then stored in a recovery tank 
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Figure 1. Schematic drawing of the experimental system. 

that is maintained at a constant pressure to ensure constant levels of container and exit pressures. 
The surge tank provides the necessary compressible volume for the pressure-drop oscillations to 
occur. Appropriate  instrumentation is installed to provide control and measurements of  the test 
parameters, namely, flow rate, temperature and pressure at various locations and the electrical heat 
input. Experimental results and details of  the experimental set-up can be found in Liu & Kakaq 
(1991). 

3. T H E O R E T I C A L  STUDY 

3.1. Formulation of  the planar model 

Figure 2 shows an analytical model of  the boiling channel system. The model consists of  a feeder 
section, a heated section and a surge tank upstream of the boiling channel. The steady-state values 
of  the pressure and the compressible volume are Po and Vo respectively. In order to develop the 
dynamic system equations the following assumptions are made: 

(1) The mass flow rate into the surge tank is constant. 
(2) At any instant the mass flow rate from the surge tank outlet to the system exit is constant. 
(3) The system exit is maintained at constant pressures, Pc. 
(4) The temperature inside of  the surge tank is constant during oscillations. 
(5) The heat input to the fluid is constant. 

With these assumptions, the two equations are obtained as follows: the dynamic equation of the 
surge tank (Akyfizlfi et al. 1980), 
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dp =p2  (M - m) 

dt (Po VoPL) 
[ l ]  

and the momentum equation for the test section, 

dm A 

dt L 
- -  - -- [p - P~ - AP(m)] [2] 

where p is the surge tank pressure, M is the mass flow rate into the surge tank, Po is the steady 
state pressure in the surge tank, Vo is the steady state gas volume in the surge tank, PL is the liquid 
density in the surge tank, A is the heater inner surface, L is the total test section, P~ is the system 
exit pressure, AP is the system pressure drop and t is time. 

At steady state, m = M, and a plot of  AP(M) versus M is the steady-state characteristics curve. 
With other parameters specified, AP(M) is a unique function of  mass flow rate M. Note that in 
this experimental system, the pipe diameters from the main tank to the surge tank and to the system 
exit all have the same diameter. 

3.2. Non-linear simulation of pressure-drop type oscillations 

Once the function form of AP(m) is known, [1] and [2] can be used to simulate the pressure-drop 
type oscillations. The period of  typical pressure-drop type oscillations are much larger than the 
resident time of  fluid particles in the flow; hence the pressure-drop type oscillations are assumed 
to take place as a succession of  quasi-steady-state operating points of the system. Therefore, the 
steady-state characteristics are used in the simulations. The steady-state characteristics used here 
are obtained from the experiments. In order to use the discrete experimental data in the simulation, 
a fourth degree polynomial is obtained by fitting the experimental data. Figure 3 shows the 
experimental data and the fitted polynomial. A dynamical system simulation software by one of  
the authors (Kodak 1989) is used to perform the simulations. 

M 

Exit Restriction 

Heater Tube i 
~ .~:~:~:~:~r.::! 

Surge Tank 

m 

P 

-~.:~..~ 

I 
Figure 2. The analytical model of the boiling channel system. 
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Figure 3. A typical polynomial fitting of the experimental steady-state characteristics used in non-linear 
simulations. Heat input = 800W, inlet liquid temperature = 23:'C. Heater: coated nichrome, 

i.d. = 7.5 mm, o.d. = 9.5 mm. 

F igu re  4 shows a sample  o f  s i m u l a t i o n  results ,  a l ong  wi th  expe r imen ta l ly  o b t a i n e d  recordings .  
I t  c an  be seen tha t  the mo d e l  gives accep tab le  results.  (The s u p e r i m p o s e d  h igh - f r equency  
osc i l la t ions  seen in  the expe r imen ta l  resul ts  are  the dens i ty -wave  type  osci l la t ions .  The  p resen t  
m o d e l  is n o t  des igned  to s imula te  these osc i l la t ions . )  

F igu re  5 shows a typical  resul t  o f  h o w a l imit-cycle  o n  the m p  p lane  is evolved with different  
in i t ia l  cond i t ions .  I t  can  be seen tha t  no  m a t t e r  w h a t  the ini t ia l  c o n d i t i o n s  are, the system is a lways  
a t t r ac ted  to this per iod ic  a t t r ac to r ,  the l imit-cycle.  

F igure  6 shows a series o f  s i m u l a t i o n  resul ts  as the mass  flow rate increases.  The  b i r th ,  the 
g rowth ,  the decl ine a n d  the  demise  o f  the l imit  cycle are clearly s h o w n  in these figures. These  are 
in a g r e e m e n t  wi th  the expe r imen ta l  results:  the system is s table  w h e n  the mass  flow rate is small ,  
i.e. in the reg ion  where  the s lope o f  the s teady-s ta te  charac ter i s t ics  is posi t ive;  the system is u n s t a b l e  
w h e n  the mass  flow rate  is m e d i u m ,  i.e. in the reg ion  with a nega t ive  slope; a n d  the system is s table  
aga in  w h e n  mass  flow rate is large, i.e. in the second  posi t ive  slope region.  
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Figure 4. Comparison of non-linear mathematical simulation with experimental recording: inlet pressure 
oscillations. Heat input = 800 W, inlet liquid temperature = 0°C, inlet mass flow rate = 7.31 g/s. Heater: 

coated nichrome, i.d. = 7.5 mm, o.d. = 9.5 mm. 
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The experimental steady-state characteristics are used here in the simulations, but  in situations 
that  the experimental data  are not  available, this model  can be used in conjunct ion with any 
predicted steady-state characteristics, no matter  what  two-phase flow model  or  what  two-phase 
flow pressure drop  correlations are used. The more  accurate the predictions o f  the system pressure 
drop  are, the better results the model will produce.  This adaptabil i ty also gives the model  versatility, 
in addit ion to its simplicity. 

3.3. Non-dimensionalization of governing equations 

In order  to perform stability and bifurcation analysis, it is convenient  to shift the equilibrium 
point  o f  the system to the origin (0, 0). For  general applicability, the governing equations need to 
be in non-dimensional  forms. To accomplish these two objectives, we now introduce the following 
dimensionless parameters,  

m - M  
rh - - -  [31 

M 

where rh is the dimensionless flow rate out  o f  the surge tank, 

P - -  P o  
,6 - - -  [4] 

Po 

where b is the dimensionless surge tank pressure, 

t 
-- - -  [ 5 ]  

VoPL/M 

where T is dimensionless time. 
Note  that  VoPL/M represents the time needed to completely fill the compressible volume Vo at 

the average mass flow rate M (or inlet mass flow rate). 
Substituting [3] [5] into [1] and [2] the following non-dimensional  equations are obtained: 

- r h ( f i + l ) 2  [ 6 ]  
dz 

drh 
dz - r Eu[fi + A P ( M )  - A P ( M  + Mrh)] [7] 

m 

Figure 5. Typical evolutions of a pressure drop type limit-cycle with different initial conditions. Heat 
input = 800 W, inlet liquid temperature = 23°C, inlet mass flow rate = 15.0 g/s. Heater: coated nichrome, 

i.d. = 7.5 mm, o.d. = 9.5 mm. 
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Figure  6. Phase  por t ra i t s  of  the p lanar  model  with different inlet mass  flow rates. (a) M = 4.0 g/s, (b) 
M = 5.0 g/s, (c) M = 5.5 g/s, (d) M = 16 g/s, (e) M = 24.5 g/s, (f) M = 25.0 g/s and  (g) M = 27 g/s. 

where Eu=AP(M)/(M2/A2pL ) is the Euler number, r = Vo/AL is the ratio of surge tank 
compressible volume to the total inner volume of the test section and A P ( ) =  AP( )/Po, is the 
dimensionless system pressure drop. 

3.4. Linearized stability analysis 

The system under study has a unique equilibrium point, rh =/~ = 0, for all parameter  values. The 
Jacobian matrix of  this system at the equilibrium point is: 

, [ ] ,  u ,8, 

Note that at the equilibrium point, m = M. The characteristic equation for the eigenvalues is, 

~2 -t- el~t q- e2 = 0 [9] 

where, 

M ~Ap(M) [10] e b = r E u  ( ? M  
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e 2 = r Eu [11] 

As stated in the stability theorem, the stability of the system of equations is guaranteed when 
the real parts of both eigenvalues are negative. According to Hurwitz theorem, the necessary and 
sufficient conditions for the real parts of  both eigenvalues to be negative are (Shirer 1987): 

(a) e~ > 0, which leads to, 

~AP(M) 

OM 
- -  > 0 [ 1 2 ]  

and 

(b) e~ e: > 0, which also leads to, 

~AP(M) 

c~M 
- -  > 0 [131 

The two conditions are identical, i.e. a positive slope on the steady-state characteristics. This has 
been a well-known criterion of stability for pressure-drop type oscillations. 

3.5. Bifurcation analysis 
Referring to figure 3, it is clear that on a single steady-state characteristics curve there are two 

points where the slopes are zero. At these points el -- 0, thus the roots of the characteristic equation 
are pure imaginary, and the stability type of  the equilibrium often changes when subjected to 
perturbations. These changes in stability types are usually accompanied with either the appearance 
or disappearance of a small periodic orbit encircling the equilibrium point. To ascertain that the 
two points with zero slopes are the bifurcation points, we apply the Hopf  bifurcation theorem (Hale 
& Kogak 1991 or Guckenheimer & Holmes 1983). 

Choosing M as the bifurcation parameter, we now show that the pair of eigenvalues crosses the 
imaginary axis with non-zero speed. Differentiating [9] with respect to the bifurcation parameter 
M at the bifurcation points, 

we get, 

2..2 = ___ x f ~ -  e2 [14] 

02r 2(r Jzu)" ,2,M ~32AP(M) 

&M - e~ + 4e: [15] 

(~2AP(Mj) 
t~M 2 

where 2r is the real part of an eigenvalue. 
At M -- Mi, 

< 0 [16] 

So, the pair of eigenvalues crosses the imaginary axis with positive speed. According to Hopf's  
bifurcation theorem, this indicates the birth of  a limit cycle. Therefore, at M = MI, a Hopf  
bifurcation occurs. 

At M = M 2 ,  

cOZAP(M2) 
> 0 [17] OM z 

So, the pair of eigenvalues crosses the imaginary axis with negative speed. This indicates the 
disappearance of  the limit cycle. Therefore, at M = M2, a reverse Hopf  bifurcation occurs. 

It can be shown that the limit-cycle is stable, or the Hopf  bifurcations are super-critical. We first 
rearrange [6] and [7] into the following "standard form": 
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Figure 7. Schematic bifurcation diagram of the planar system: A. the radius of the periodic orbit, which 
is asymptotically stable, as a function of parameter M. 

df 
d~ 
drh 

=(o 1 ) ( )  ,18, 

where, 

f (p,  m) = - m ( 2 p  + /5~) [191 

g(/5, ih) = (r Eu -- 1)/5 + r Eu[AP(M) - AP(M + Mrh)] [20] 

With f (0 ,  0) = g(0, 0) = 0 and D[f(O, 0), g(0, 0)] = 0, the stability of  the limit-cycle is determined 
by the sign of a, where a is given by Guckenheimer & Holmes (1983) as, 

a [21] 

where x =/5, y =  rh and .f,, denotes i?f(O, O)/~x ?0', etc. 
I f  a < 0, the H o p f  bifurcation is super-critical (the limit-cycle is stable); while if a > 0, the Hopf  

bifurcation is sub-critical (the limit-cycle is unstable). 
For the present system, using [21], a is determined to be negative. Therefore, we have showed 

that the H o p f  bifurcations are super-critical. 
In conclusion, we have proved that, at M = M~, a super-critical Hopf  bifurcation occurs, and at 

M = M2, a reverse super-critical Hopf  bifurcation occurs. This analysis can be shown schematically 
as the bifurcation diagram in figure 7. When M < Mj, the equilibrium point is asymptotically 
stable; when M~ < M < M2, the equilibrium is unstable and it gives up its stability to a unique 
stable limit cycle; when M > Mz, the limit cycle contracts to an equilibrium point which is 
asymptotically stable. 

4. C O N C L U D I N G  R E M A R K S  

A planar system of equations has been developed based on the experimental set-up and used 
successfully to predict the stability boundaries, to simulate the pressure-drop type oscillations and 
to perform bifurcation analysis. The pressure-drop type limit-cycles are generated after super- 
critical H o p f  bifurcation in the two-phase flow dynamic system, and the limit-cycles converge to 
an asymptotically stable equilibrium point after a reverse supercritical Hopf  bifurcation. The 
dynamic simulations of  pressure-drop oscillations and the linear stability analysis based on the 
planar model compare well with the experimental results. 
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